arXiv:0910.2178v1 [astro-ph.CO] 12 Oct 2009

Statistical Properties of the Spatial Distribution of
Galaxies

N. Yu. Lovyagi
St.-Petersburg State University, Universitetskij pr. 28, St.-Petersburg, 198504 Russia

Astrophysical Bulletin, 2009, Vol. 64, No. 3, pp. 217-228.
The original publication is available at www.springerlink.com:
http://www.springerlink.com/content/m04u0814r1706511.

Abstract

The methods of determining the fractal dimension and irregularity scale in simulated
galaxy catalogs and the application of these methods to the data of the 2dF and 6dF cat-
alogs are analyzed. Correlation methods are shown to be correctly applicable to fractal
structures only at the scale lengths from several average distances between the galaxies,
and up to (10-20)% of the radius of the largest sphere that fits completely inside the
sample domain. Earlier the correlation methods were believed to be applicable up to the
entire radius of the sphere and the researchers did not take the above restriction into
account while finding the scale length corresponding to the transition to a uniform distri-
bution. When an empirical formula is applied for approximating the radial distributions
in the samples confined by the limiting apparent magnitude, the deviation of the true
radial distribution from the approximating formula (but not the parameters of the best
approximation) correlate with fractal dimension. An analysis of the 2dF catalog yields a
fractal dimension of 2.20 + 0.25 on scale lengths from 2 to 20 Mpc, whereas no conclusive
estimates can be derived by applying the conditional density method for larger scales due
to the inherent biases of the method. An analysis of the radial distributions of galaxies
in the 2dF and 6dF catalogs revealed significant irregularities on scale lengths of up to
70 Mpc. The magnitudes and sizes of these irregularities are consistent with the fractal
dimension estimate of D = 2.1-2.4

[Y

INTRODUCTION

The spatial distribution of galaxies bears signatures of both the initial conditions in the
early Universe and the evolution of the primordial density perturbations. An analysis of various
galaxy samples performed using the two-point correlation function showed that this function
has a power-law form £(r) = (r¢/r)" on scale lengths ranging from 0.01 to 10 Mpc (hereafter we
adopt a Hubble constant of Hy = 100km/s/Mpc) with a slope of v = 1.77 and the parameter
ro = 5 Mpc [1]. It has long been considered that the scale of the ry parameter is the typical
irregularity scale length, and the distribution of galaxies becomes uniform starting from the
scale length of rg = 5 Mpc. However, the discovery of structures with the scale lengths of
several tens and hundreds Mpc [2] in recent surveys has cast doubt upon this hypothesis.

In this context, the problems of applicability limits and reliability of the correlation methods
of the analysis of spatial distribution of galaxies, and finding new methods for describing large
and very large structures acquire special importance.

At present, two kinds of data on the galaxy redshifts are of great importance.
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e The first kind are the redshift catalogs covering large areas (solid angles) of the sky, but
limited to small redshifts (up to z < 0.5) (2dF, 6dF, SDSS, etc.). Such catalogs can be
analyzed via applying the correlation methods to determine the fractal dimension.

e The second kind is represented by the deepfield catalogs of photometric redshifts. Such
studies cover small solid angles (of the order of 1°x1°), but extend to much larger redshifts
z > 1 (up to 6) (COSMOS, HDF, HUDF, FDF and others). Correlation methods are
difficult to apply to such catalogs due to the small radius of the largest sphere that fits
entirely inside the small solid angle considered.

However, both kinds of catalogs can be used to analyze the radial distribution of galaxies,
built upon a sample confined by the limiting apparent magnitude. This method not only
removes the restriction on the size of the largest sphere thereby significantly increasing the
attainable research scale lengths, but it can also be applied to all galaxies in the catalog and
not only to those in a volume-limited sample thereby increasing the number of objects studied.
An analysis of fluctuations in the radial distribution of galaxies can be used to determine both
the sizes and the amplitudes of the largest structures in the galaxy sample considered.

In this paper we analyze two methods of statistical analysis of structures—a determination
of the fractal dimension, and an analysis of radial distributions. Despite the fact that our
analysis is limited to the 2dF and 6dF catalogs, we constructed our simulated lists with two
kinds of catalogs (covering large and small solid angles on the sky).

In this paper we make use of our own software, developed to simulate three-dimensional
catalogs of galaxies and to perform statistical analysis of both real and simulated samples. It
is a C++ library of functions (so far, without a user interface). We are currently preparing
its description, which will be made available, along with the source code, at our web site. The
software covers a somewhat broader scope of problems than that described in this paper, and
will be a basis for a future package meant for comprehensive statistical analysis of the spatial
distribution of galaxies.

2. METHODS USED TO ANALYZE THE STRUCTURES

2.1. Estimating the Fractal Dimension

Fractal dimension is estimated using the method of conditional density in spheres (the total
correlation function in spheres). The definitions of the total and reduced correlation functions
and a detailed description of their properties can be found in [2]. We chose the method of
conditional density in spheres for the reasons stated by Vasil’ev [3]. He showed that this method
is, on the one hand, sufficiently fast (compared to the method of cylinders), and, on the other
hand, sufficiently accurate (the conditional density in spheres is, unlike the conditional density
in shells, less subject to fluctuations) and, moreover, it can be applied to fractal structures
(unlike the method of reduced two-point correlation function, which is built assuming uniform
distribution inside the sample).

The idea of the method consists of constructing a dependence of the number of points N (r)
inside a sphere of radius r, averaged over spheres centered on all the points of the set. Only
a portion of the set is considered, therefore the averaging should be performed only over the
spheres that fit completely inside the set. The dimension is computed by the conditional number



densit n(r) = N(r)/ (4/3nr3) in logarithmic coordinates, where the slope of the line must be
equal to the fractal dimension D minus three, because the expected behavior is n(r) oc r?=3.

2.2. Analysis of Radial Distributions

Radial distribution is such a dependence N(z), that
dN(z,dz) = N(z)dz, (1)

where dN is the number of galaxies with redshifts between z and z + dz. The construction of
such a distribution involves counting the number of galaxies AN(z, Az) inside a spherical shell
of thickness Az, with midradius lying at the distance corresponding to redshift z, i.e., formula

() transforms into
AN(z,Az) = N(2)Az.

Thus, the N(z) distribution can be built in bins with a certain chosen step in Az. Traditionally,
the AN(z, Az) variable—the number of galaxies in shells—is plotted on the curves of radial
distribution.

For magnitude-limited catalogs the radial distribution N (z) is approximated by the following
empirical formula (see, e.g., [4, [5]):

N(z) = A2" exp <— <Z3)a) . (2)

Here the three parameters v, z. and « are independent from each other and A is the normalizing
factor (the integral of radial distribution is normalized to the total number of galaxies in the

sample):
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where N is the total number of galaxies and I'(x) is the (complete) Euler Gamma-function.
However, it is impossible, when searching for the best approximation of the radial distribution,
to compute the A ([B]); due to the fluctuations we have to search for it in the interval from
A—VAto A+ VA,

The approximation is performed via the least squares method, i.e., one must search for
the parameter values that minimize the sum of squared residuals. The classical least squares
method cannot be applied as the approximating function is not linear in parameters. However,
a “straightforward” minimization using the fastest (gradient) descent method is also extremely
inefficient, as the minimum is indistinct and it may take a computer several days to several
months to find it. That is why we employ the grid search method, where the grid mesh and
search domain are reduced at each successive iteration.

After finding the best-fit parameters, the domains of irregularities are identified on the curve

of relative fluctuations:
P Nobs - Ntheor (4)
N=—
Nthem"

2Terms “density” and “concentration” are synonyms in this sense, since the concentration is the density of
point sources with the unit mass.



where

Nobs = N(Zla AZ),

Ntheor = A2" €xXp (_ (i) )
Ze

We can thus interpret any fluctuation exceeding the Poisson noise level of oy > 30,, as a
structure, Where@ 0p = 1/v/Nineor, because in a fractal distribution the characteristic fluctuation
is increased by o¢, which can be computed based on the value of the two-point correlation
function &(r):

z=z;
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where V' is the volume of the set [6] 7], §].

3. CATALOGS USED

3.1. The 2dF Catalog

The 2dF catalog 2dF [9], or, more precisely, its 2dFGRS subsample, which includes the data
on the redshifts of galaxies, contains a total of 245591 objects, of which about 220 thousand
have sufficiently accurately measured redshifts. The magnitude limits in the J-band, corrected
for the Galactic extinction, are 14.0 < m; < 19.45. Most of the galaxies have redshifts z < 0.3.
The catalog is available at http://magnum.anu.edu.au/ TDFgg.

The galaxies of the catalog concentrate in the sky in two continuous strips extending along
the right ascension, and in randomly scattered small areas. About 140 thousand galaxies are
located in the Southern strip, and about 70 thousand galaxies, in the Northern strip.

3.2. The 6dF Catalog

The 6dFGS catalog is an all-sky spectroscopic survey at Galactic latitudes |[b] > 10° [10),
11}, 12]. Observations began in 2003 and were made using a multichannel spectrograph (they
have not yet been completed at the time of writing this paper). The catalog is available
at http://www-wfau.roe.ac.uk/6dFGS. In this paper we use the second data release of the
catalog, which contains 83014 galaxies with known equatorial coordinates. Of these, 71627
objects have sufficiently reliably determined redshifts. The survey has been completed in three
sky areas. In this paper we use a sample of galaxies with known R-band magnitudes.

4. SIMULATED GALAXY CATALOGS

To test the reliability and accuracy, and to identify the applicability limits of the methods,
they must be applied to simulated catalogs. To this end, we generate catalogs that simulate not
only the spatial distribution of galaxies (uniform and fractal), but also the distribution of their
absolute magnitudes (i.e., the luminosity function of galaxies). Such catalogs can be subjected
to both the correlation analysis (determination of the fractal dimension) in a volume-limited

3Here we use Nipeor and not Ny, because the latter may be equal to zero.



sample in a large solid angle, and to the analysis of the radial distribution in a magnitude-
limited sample either in a large or in a small solid angle.

Moreover, we use the MersenneTwister pseudorandom number generator to generate random
quantities (space positions and absolute magnitudes of galaxies). This generator, unlike the
standard linear congruent generator, produces far less correlated numbers and it is considered
suitable for the use of Monte-Carlo method [13].

In this paper we analyze a fractal model of the real distribution of galaxies parametrized by
the fractal dimension and the parameters of the luminosity function. This model describes the
power-law nature of the observed correlations of the distribution of galaxies in real catalogs.

4.1. Spatial Distribution of (GGalaxies

We use three models of the spatial distribution of galaxies.

Uniform distribution. The coordinates of each point of the set are generated as three random
numbers uniformly distributed in the [0, 1] interval (and hence the entire set is contained
in the [0, 1] x [0, 1] x [0, 1] cube).

Cantor dust (more precisely, its generalization to the three-dimensional case). The zero gen-
eration of this set coincides with the [0, 1] x [0,1] x [0, 1] cube. Each edge of the cube
is then subdivided into m equal parts, i.e., the entire cube is subdivided into m? identi-
cal subcubes, and for each such subcube the probability p of its “survival” in the next
generation is defined. The next generation consists of the set of “surviving” subcubes,
and the algorithm is then reiterated for each such subcube. The final set is the limit
obtained as the number of the generation becomes infinite: in each generation the edge

of the cube becomes shorter by a factor of m and tends to 0 as —, , i.e., the subcubes

contract to points. In case of a real distribution the process should be terminated at a
certain generation n. A point is chosen inside each of the subcubes “surviving” in the
last generation. The coordinates of this point are random numbers uniformly distributed
along the projections of the edges of the subcube onto the coordinate axes.

The theoretical dimension of such a set is known to be given by the formula

D = logm(pm3).

In our case we use the given dimension D to compute the probability p = m?”=3.

Gaussian random walk and its generalization with the possibility of generating sets of 2 <
D < 3. dimension. The first point coincides with the coordinate origin (0,0,0). In
the classical case each successive point is obtained from the previous point by adding
to its every coordinate a normally distributed random number with zero mean and unit
variance.

The generalization that we propose here for the first time consists of the following: at
each stage we generate two points instead of one with a certain probability w. A more
accurate description of the algorithm uses the term “generation”. The zero generation
coincides with the coordinate origin (0,0,0). Every next generation is obtained from the
previous generation in accordance with the following rule: for each point of the previous
generation one or two points of the new generation are generated, like in the classical
case, by adding normally distributed random numbers to the coordinates of the previous
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Fig. 1. The Hummer-Aitoff projection of the generalized Gaussian random walk with w = 107%. Our
sample is a sphere with a smaller radius (see Section [5.2]).

point so that the probability of generating one or two points is equal to 1 — w and w,
respectively. The algorithm is reiterated for each point of the new generation. The case of
w = 0 corresponds to classical Gaussian random walk. Figure [I] shows the corresponding
set with w = 1072,

4.2. The Absolute Magnitude Distribution of Galaxies

We generate the absolute magnitude distribution of galaxies in simulated catalogs in a way
to make it consistent with the galaxy luminosity function—the Schechter function. We adopt
the form of this function from [I4] [I5]:

S(M) =0.92¢¢exp (—0.92 (v + 1) (M — M™) — exp (—0.92 (M — M™))).

The probability density fj; of the absolute magnitude as a random quantity is given by the
normalized variant of the Schechter function:

Ju dM = (5)

We adopt the parameters of the luminosity function from the studies of the 2dF catalog
[16] (M* = —19.67, ¢po = 0.0164, « = —1.21), since we develop our simulated catalogs as the
models of the 2dF catalog.

5. RESULTS OF THE ANALYSIS OF SIMULATED FRACTAL
STRUCTURES
5.1. Simulated Galaxy Catalogs

We generated uniformly distributed points for the Cantor sets with the dimensions of 2.0
and 2.6, and for the Gaussian random walk with w = 107 (the fractal dimension of this set is
estimated at 2.4 4 0.3). The number of generated points exceeded 7.5 - 107 for all cases. This
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procedure is followed by the determination of the center of a sphere containing the same number
of points 2 - 107 for each variant (these restrictions are determined by the available computer
resources). The resulting sphere serves as a model of the observed part of the Universe with
the observer located at its center.

Finding the center is a necessary procedure, because we have to make sure that the set has
been generated completely in the selected region, i.e., our volume contains no voids due to the
finite size of the generated set, rather than due to its fractal structure. Such voids may bias
the results obtained by analyzing the model. To ensure this, the center is found as the locus
of the highest concentration, or, more precisely, the adopted center coincides with such a point
of the set, where the radius of the sphere centered on it and containing the required number of
points would be minimal among all spheres for all generated points. However, the procedure of
finding such a point is too time-consuming, making it impossible to use the exhaustive search
algorithm. Instead, the set is subdivided into cubes, and instead of counting the number of
points in the sphere, we count the number of cubes in the sphere with the weights equal to the
number of points in the cube.

Each galaxy inside the selected sphere is assigned with an absolute magnitude distributed
in accordance with the Schechter law (). By setting the parameter ¢, (see Section [.2]) one can
establish a unique relation between the number of galaxy points Ny in the simulated spherically
symmetric set and the radius Ry of its bounding sphere [15]:

3 %mbof‘(l + a, )

RO - N() )

where I' is the incomplete Gamma-function:

[e.e]

I(a,z) = /e_tt“_ldt.

z

We can thus compare the real and simulated catalogs.

5.2. Subsamples of Simulated Catalogs

We generated five subsamples for each spherically symmetric simulated catalog:

e asample bounded by the concentric sphere of smaller radius containing exactly 10° points
(this is the number that allows the fractal dimension to be computed in reasonable time
by constructing a grid of models);

e a small solid-angle sample of about 10° points, which is also used to compute the fractal
dimension (2 ~ 0.057);

e a magnitude-limited sample with my;,, = 17™.0 used to construct radial distributions.
For this subsample we constructed three volume-limited samples containing objects up
to z = 0.013 and M ~ —16™.3, up to z = 0.1 and M ~ —20™.3, up to z = 0.13 and
M ~ —20™.9, in order to compute the fractal dimension;

e a magnitude-limited sample covering a large solid angle (2 ~ 0.37) to be used to construct
radial distributions. For this subsample we constructed three volume-limited samples
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containing objects located up to z = 0.04 and M ~ —18™.4, up to z = 0.06 and M ~
—19™.3, up to z = 0.08 and M ~ —19™.9, in order to compute the fractal dimension.
The sample can be viewed as a model of the 2dF, 6dF and other similar catalogs;

e a magnitude-limited sample inside a small solid angle, to be used only for constructing
radial distributions. The sample can be viewed as a model of the COSMOS, HDF and
other similar catalogs.

5.3. Conclusions Based on the Analysis of Simulated Catalogs

5.3.1. Conclusions concerning the efficiency of the use of the method of conditional
density in spheres for determining the fractal dimension

The dimension D is determined by analyzing the conditional density function n(r) in loga-
rithmic coordinates, where it must transform from a power-law form into a linear function

Ign =A+ (D —3)lgr.

However, practice shows that in reality it is not linear over the entire interval from ry (the
minimum distance between the points) to 7, (the radius of the greatest sphere that fits entirely
inside the set). For each of such sets (a catalog), three characteristic portions can be identified
on the curve of conditional density (from left to right):

- in the first portion of the curve (between rq and 1), the decrease of n(r) corresponds to
dimension 0: the corresponding radii are comparable to the minimum distance between
the points of the set;

- in the second portion of the curve (between r; and r3), n(r) “Gets into operational mode”,
where the slope (as we expect) corresponds to the dimension;

- in the third portion of the curve (between ry and r,,) the conditional probability function
behaves unpredictably, as the averaging is made over too few spheres, making this portion
unsuitable for computing the dimension.

Our task is thus to identify the second portion, i.e., to find such r; and ry, between which the
function would behave linearly. The parameters A and D for this portion can then be easily
estimated via the leastsquares method. Figure 2] shows examples of the conditional density
curves for different cases:

e based on an analysis of sets with known Hausdorff dimension (Cantor set)—a comparison
of the known and computed dimensions leads us to conclude that the method is an efficient
tool for determining the dimensions of the sets:

— with a spherically symmetric configuration;
— located inside a limited solid angle;
— in volume-limited galaxy samples having a spherical configuration;

— in volume-limited samples located inside a limited solid angle.
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Fig. 2. Examples of conditional density curves. From top to bottom: Poisson set (the curve yields a
fractal dimension of 2.99); Cantor set with a dimension of 2.6 (the computed dimension is 2.61), and
Cantor set with a dimension of 2.0 (the computed dimension is 1.99). The solid lines correspond to
the computed values, the dotted lines are the linear fits used to compute the dimension, and the bold
line is the portion of the conditional density curve used for the linear fit. The x-values of the left- and
right-hand boundaries of this portion are equal to logri, and logry, respectively, and the x-value of
the rightmost point of the curve is log 7, (these quantities are discussed in the text).



The method can also be used to determine the dimensions of a set of galaxies in the
Universe by analyzing volume-limited samples in galaxy redshift surveys in limited sky
areas (a typical situation). The accuracy of the dimension determination (for sets with
the same fractal dimension in all their parts) is £0.1-0.2.

e in case of a uniform distribution, the dimension can be determined on scale lengths (the
upper limit is equal to the ry radius) of up to 100% of the radius r,, of the greatest sphere
that fits entirely inside the set.

The radius ry decreases with decreasing dimension, i.e., the upper limit of scale lengths,
where the fractal dimension can be determined using this method, becomes shorter and
reduces at dimension 2.0 to mere (5-20)% of the radius of the greatest sphere that fits
entirely inside the set. However, no clear correlation is observed due to the interference
of other factors (e.g., individual features of the fractal set, lacunarity);

e for a spherical configuration the radius of the greatest sphere is equal to the survey depth
radius, whereas non-spherical geometry of the sample restricts substantially the size of
the greatest sphere, thereby strongly reducing the 7, radius (down to 0.01% of the survey
depth for a solid angle of 0.017). volume-limited samples decrease the survey depth
several times;

e the conditional density curve for sets with dimensions smaller than 3.00 in the region
r > 1o can even exhibit a fictitious transition to uniformity (see, e.g., the lower panel in
Fig. ). Thus no definitive conclusions about the attainment of uniformity can be made
based on the right-hand end of the conditional density curve, because even purely fractal
distributions may exhibit effects of fictitious uniformity.

Hence, an analysis of catalogs like 2dF, 6dF and SDSS, limited in redshift by z < 0.5 (which
corresponds to about 1300 Mpc) with non-spherical configurations, making it essential to select
volume-limited samples, may provide conclusive results on the presence of uniformity only on
the scales 30-100 times smaller (i.e., 10-40 Mpc).

Such a behavior of conditional density at r > ry can be explained by the fact that in this
portion of the curve, the averaging of the number of points inside the sphere of radius r is made
over a too small number of spheres: the number of spheres centered on points of the set, and
fitting entirely inside the set, decreases with increasing radius of the sphere. The extreme right
point on the curve of conditional density is computed based on only one sphere (see Fig. [B]).
Proper statistics (suitable for fractal distribution) are accumulated only where the number of
spheres amounts to 20-90% of the total number of points.

5.3.2. Conclusions about the efficiency of the analysis of radial distributions
We make the following conclusions about the efficiency of the analysis of radial distributions:
e concerning the parameters of the fit by the empirical formula (2] (see Fig. M):

— this empirical formula describes the simulated distribution equally well both in the
uniform case and in the fractal cases at the dimensions greater than 2.0. At smaller
dimensions the fluctuations increase sharply, many “empty” bins appear, and an
approximation becomes impossible;
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Fig. 3. The number of spheres fitting entirely inside the set as a function of the radius of the sphere
(i.e., the number of spheres used for averaging the conditional density function—the number of points
in these spheres—for the adopted sphere radius) for the Poisson set.

— the best-fit parameters@ are sufficiently stable against a change in the step in z,
except for the large (in our case, smaller than 1/25 of the survey depth) steps;

— these parameters are unstable against a change in the number of points (this con-
clusion can be made based on large differences between the parameters inferred for
the spherical configuration, and the configurations limited to different solid angles
in an analysis of the Poisson set). Parameters are unstable against the choice of
solid-angle samples;

— parameters show no evident correlation with the fractal dimension. It was expected
that v+ = D — 1, but this is evidently not the case. Moreover, totally different
combinations of independent parameters may result in very similar functions with
approximately the same sum of squared residuals. This may indicate that the param-
eter set for this problem is redundant, thereby casting doubts on the unconditional
adoption of the above empirical formula for approximating the radial distribution.
However, in cases when a good combination of parameters (i.e., a combination that
results in a small sum of squared residuals) is found, relative fluctuations of the
approximations about the observed value can be analyzed. Although a small sum of
squared residuals can be achieved with different parameter combinations, the corre-
sponding curves of relative fluctuations are almost identical for all variants. Thus,
the approximation by this formula makes it possible to determine the scale and mag-
nitude of fluctuations, which allows the structures to be adequately identified using
the method described in Section 2.2l

e concerning relative fluctuations:

— the higher is the amplitude of fluctuations (), the smaller is the fractal dimension.
It increases from (3-4)0, for uniform distribution to (30-40)c, for Cantor set with a
dimension of 2.0 (see Fig. [). The Gaussian random walk yields a somewhat smaller
amplitude;

4For the true probability density of a galaxy’s redshift as a random quantity, i.e., for the comparison we take
not the A variable from formula ([B]), but A/N/Az, where N is the total number of galaxies in the sample and
Az is the adopted step.
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Fig. 4. Example of a radial distribution for (from top to bottom) the Poisson set, the Cantor set of
dimension 2.6 and the Cantor set of dimension 2.0. Az = z,,/75 (the number of bins is 75). The solid
and dotted lines correspond to the measured radial distribution and the distribution, approximated
by the empirical formula, respectively.
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Fig. 5. Example of the curve of relative fluctuations for (from top to bottom) the Poisson set, the
Cantor set with a dimension of 2.6, and the Cantor set with a dimension of 2.0. Here Az = z,,/75 (the
number of bins is equal to 75). The solid lines correspond to the measured fluctuation and the dotted
lines—to the o = 0 and £30), levels. Fluctuations exceeding this level must indicate the detection of a
structure. The curve for uniform distribution exhibits two, probably fictitious, large fluctuations due
to the eventual inaccuracy of the empirical formula. The same fluctuations recur on the curve for the
dimension of 2.6, but they are superimposed by proper fluctuations, increasing the Poisson level, and
existing due to the fractal nature of the distribution. In case of the dimension of 2.0, the magnitude
of these proper fluctuations becomes very high.
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— even in case of a uniform distribution of points, the fluctuations with amplitudes

above 30, appear at the left end of the curve of the radial distribution, and these
fluctuations recur in all subsamples of the corresponding set. Apparently, the empir-
ical formula employed does not fit sufficiently well the left end of the radial distribu-
tion (the effect of the exponential term starts too early). That is why the first two
fluctuations exceeding the Poisson noise level cannot be viewed as true signatures of
the structure for the sets of all dimensions;

the number of irregularities found, their size and amplitude expressed in fractions
of 0,, increase with decreasing fractal dimension and decrease with decreasing solid
angle;

radial distributions can be used to determine whether irregularities are present
throughout virtually the entire survey depth in the redshift interval from 10% to
60% of the survey depth z,,. The fractal dimension can be estimated by comparing
the observed radial distribution with the corresponding simulated distributions.

e the step in 2z should be neither too small nor too large, as it is in case of such an optimum
step that the parameters of the approximation are more or less the same and there are few
enough chance fluctuations due to “empty bins” or single points. We found the optimum
number of bins to be N = 40 + 80, but it should be chosen individually in each particular
case. Larger-than-optimum step shows up in case of the determination of the best-fit
approximation of the radial distribution: the computed parameters begin to depend on
the step size and the shape of fluctuations changes appreciably. Too small a step can be
found at the appearance of bins containing no galaxies, and noise in the fluctuations.

6. REDUCTION OF REAL CATALOGS

6.1. Computation of the Number of Dimension

To compute the number of dimension, one has to not only select a volume-limited sample,
but find an area in the sky, where the catalog has been fully completed. The 2dF catalog has
two such areas, contains about 70 000 points each. The 6dF catalog has three such areas, each
contains at least 20 000 points. Identification of a volume-limited sample leaves only about one
third of all galaxies, implying that significantly less than 10000 points should remain in the
areas of the 6dF catalog, which is evidently insufficient for computing the fractal dimension.
That is why we calculate the number of dimension only for the sample of 2dF galaxies.

We selected two sky areas almost completely covered with observations:

Interval of o | Interval of § Q No. of galaxies
150° <+ 210° —4° +2° 0.0347 61259
328° =+ 52° —32° + —24° | 0.057w 82044

In each area we construct three volume-limited samples: with redshifts of up to z = 0.075,
z = 0.15 and z = 0.2, respectively. Figure [6] shows the cone diagrams for the volume-limited

samples.
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Fig. 6. Cone diagrams (in polar coordinates (z,«)) of volume-limited samples up to zy,, = 0.15 for
the Northern (top) and Southern (bottom) domains of the 2dF catalog.
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Fig. 7. Curve of conditional density for the 2dF catalog. volume-limited sample in the first area of up
to z = 0.075.

6.2. Analysis of the Radial Distributions

The analysis of radial distributions should not be necessarily restricted to completely filled
sky areas. Therefore for both catalogs (2dF and 6dF) we construct three radial distributions—
one for the entire set, and two for the two areas with sufficient observational coverage. The
corresponding areas for the 6dF catalog are determined by the following parameters:

Interval of o | Interval of § Q No. of galaxies
290° =+ 100° —42° + —23° | 0.2637 16288
150° + 240° —42° + —23° | 0.1397 14407

For the 2dF catalog we select the same areas as those used to determine the dimension.

6.3. Conclusions

e The result of computing of the number of dimensions lead us to conclude that the fractal
dimension of the set of galaxies in volume-limited samples of the 2dF catalog is equal to
2.20 4+ 0.25. Trregularity scales range from 2 Mpc to 20 Mpc (see Fig. [). The standard
error of the dimension is greater than the error for the simulated catalogs, what suggests
that the spatial distribution of galaxies is not ideally fractal, but possibly multifractal.

We also tried to find the fractal dimension for the 6dF catalog in areas of the best
observational coverage. However, our analysis must have yielded grossly underestimated
dimension (1.5 and 1.9). This effect is due to the insufficiently complete and insufficiently
uniform observational coverage of the sky area considered, and different limiting redshifts
z in different observational areas. Both of these effects produce fictitious voids in the
portion, where the dimension is determined, resulting in its underestimated value.

e As for results of the analysis of radial distributions, the main conclusion that follows from
it consists in the discovery of irregularities with the amplitudes substantially exceeding
not only 30,, but even 70, level, in the numbers much greater than one might expect for a
uniform distribution. This fact suggests a clearly non-uniform distribution of galaxies up
to 300-500 and 700 Mpc. Irregularities at the right end of the radial distribution for the
6dF catalog only indicate that the depth in z varies for different observed areas and that
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Fig. 8. Radial distribution (top) and the curve of relative fluctuations (bottom) for the 2dF catalog.
The first domain Az = z,,/75.

the number of galaxies is insufficient at large z. The characteristic sizes (scale lengths)
of irregularities amount to 40-70 Mpc (see Fig. [§ [@).

The irregularity amplitude is of about 6, which corresponds to a fractal dimension greater
than 2.0, but smaller than 2.6, i.e., the dimension estimate D = 2.2, obtained using
the correlation method, adequately describes the nature of irregularities in the radial
distribution.

7. CONCLUSIONS

As a conclusion, we shall specify the following results of our analysis of simulated catalogs
of the spatial distribution of galaxies, and absolute magnitude distribution of galaxies:

e correlation methods can be correctly applied only on scale lengths from several average
distances between the galaxies up to (10-20)% of the radius of the largest sphere that
fits entirely inside the set. The authors of earlier studies believed that the method could
be applied out to the entire radius, and the above 10% restriction, which applies to all
distributions but uniform, was not taken into account when determining the scale length
where the distribution becomes uniform (see, e.g., [17], [18])
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Fig. 9. Radial distribution (top) and the curve of relative fluctuations (bottom) for the 6dF catalog.
The first domain Az = z,,/75.
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e the empirical formula (2)), which is often used to approximate radial distributions of ob-
jects in magnitude-limited catalogs, yields equally adequate minimum root-mean-square
approximation for both uniform and fractal distributions with dimensions exceeding 2.0.
At smaller dimensions the scatter becomes too large and the formula is inapplicable.

We found the fractal dimension to correlate with the deviation of the true radial dis-
tribution from the approximating formula, and not with the parameters of the best-fit
approximation.

Our analysis of real catalogs yielded the following results:

e the data of the 2dF catalog imply a fractal dimension of 2.20 £ 0.25 in the interval from
2 to 20 Mpc. No reliable conclusions can be made on larger scales about the dimension
and scale of irregularities due to the intrinsic biases of the method. Deeper surveys and
surveys with better sky coverage are needed for this task.

Because of its incompleteness, the 6dF catalog can not yet be used to derive a reliable
estimate for the fractal dimension;

e An analysis of radial distributions revealed the significant irregularities both in the 2dF
and 6dF catalogs. Deviations from smooth distribution exceed 7o, and their scale lengths
amount to 70 Mpc. The scale length and magnitude of irregularities correlate rather well
with fractal-dimension estimates in the 2.1-2.4 interval.
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